Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Health Econ ; 23(7): 1173-1185, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-2270713

RESUMEN

BACKGROUND: Antimicrobial resistance has been recognised as a global threat with carbapenemase- producing-Enterobacteriaceae (CPE) as a prime example. CPE has similarities to COVID-19 where asymptomatic patients may be colonised representing a source for onward transmission. There are limited treatment options for CPE infection leading to poor outcomes and increased costs. Admission screening can prevent cross-transmission by pre-emptively isolating colonised patients. OBJECTIVE: We assess the relative cost-effectiveness of screening programmes compared with no- screening. METHODS: A microsimulation parameterised with NHS Scotland date was used to model scenarios of the prevalence of CPE colonised patients on admission. Screening strategies were (a) two-step screening involving a clinical risk assessment (CRA) checklist followed by microbiological testing of high-risk patients; and (b) universal screening. Strategies were considered with either culture or polymerase chain reaction (PCR) tests. All costs were reported in 2019 UK pounds with a healthcare system perspective. RESULTS: In the low prevalence scenario, no screening had the highest probability of cost-effectiveness. Among screening strategies, the two CRA screening options were the most likely to be cost-effective. Screening was more likely to be cost-effective than no screening in the prevalence of 1 CPE colonised in 500 admitted patients or more. There was substantial uncertainty with the probabilities rarely exceeding 40% and similar results between strategies. Screening reduced non-isolated bed-days and CPE colonisation. The cost of screening was low in relation to total costs. CONCLUSION: The specificity of the CRA checklist was the parameter with the highest impact on the cost-effectiveness. Further primary data collection is needed to build models with less uncertainty in the parameters.


Asunto(s)
COVID-19 , Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Análisis Costo-Beneficio , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/epidemiología , Hospitales , Humanos , Reino Unido/epidemiología
2.
Vaccine ; 41(7): 1310-1318, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2211612

RESUMEN

The Centers for Disease Control and Prevention (CDC) developed and implemented the v-safe after vaccination health checker (v-safe) to monitor COVID-19 vaccine safety and as an active surveillance supplement to existing CDC vaccine safety monitoring programs. V-safe allows persons who received COVID-19 vaccines to report on post-vaccination experiences and how symptoms affected their health at daily, weekly, and monthly timepoints after vaccination. Text message reminders are sent linking to Internet-based health check-in surveys. Surveys include questions to identify v-safe participants who may be eligible to enroll in a separate pregnancy registry activity that evaluates maternal and infant outcomes in those pregnant at the time of vaccination or receiving vaccine in the periconception period. We describe the development of and enhancements to v-safe, data management, promotion and communication to vaccination sites and partners, publications, strengths and limitations, and implications for future systems. We also describe enrollment in v-safe over time and demographics of persons participating in v-safe during the first year of operation (December 14, 2020 - December 13, 2021). During this time, 9,342,582 persons submitted 131,543,087 v-safe surveys. The majority of participants were female (62.3 %) and non-Hispanic White (61.2 %); median age was 49.0 years. Most participants reported receiving an mRNA COVID-19 vaccine as their first recorded dose (95.0 %). V-safe contributed to CDC's vaccine safety assessments for FDA-authorized COVID-19 vaccines by enabling near real-time reporting of reactogenicity once the COVID-19 vaccination program began in the community, encouraging reports to the Vaccine Adverse Event Reporting System and facilitating enrollment in a large post-vaccination pregnancy registry. Given that v-safe is an integral component of the most comprehensive safety monitoring program in U.S. history, we believe that this approach has promise as a potential application for future pandemic response activities as well as rollout of novel vaccines in a non-pandemic context.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Embarazo , Centers for Disease Control and Prevention, U.S. , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Pandemias/prevención & control , Estados Unidos , Vacunación/efectos adversos , Vacunas
3.
Vaccine ; 40(52): 7653-7659, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2096113

RESUMEN

BACKGROUND: Risk of experiencing a systemic adverse event (AE) after mRNA coronavirus disease 2019 (COVID-19) vaccination may be greater among persons with a history of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; data on serious events are limited. We assessed if adults reporting systemic AEs resulting in emergency department visits or hospitalizations during days 0-7 after mRNA COVID-19 vaccine dose 1 were more likely to have a history of prior SARS-CoV-2 infection compared with persons who reported no or non-severe systemic AEs. METHODS: We conducted a nested case-control study using v-safe surveillance data. Participants were ≥ 18 years and received dose 1 during December 14, 2020─May 9, 2021. Cases reported severe systemic AEs 0-7 days after vaccination. Three controls were frequency matched per case by age, vaccination date, and days since vaccination. Follow-up surveys collected SARS-CoV-2 histories. RESULTS: Follow-up survey response rates were 38.6 % (potential cases) and 56.8 % (potential controls). In multivariable analyses including 3,862 case-patients and 11,586 controls, the odds of experiencing a severe systemic AE were 2.4 (Moderna, mRNA-1273; 95 % confidence interval [CI]: 1.89, 3.09) and 1.5 (Pfizer-BioNTech, BNT162b2; 95 % CI: 1.17, 2.02) times higher among participants with pre-vaccination SARS-CoV-2 histories compared with those without. Medical attention of any kind for symptoms during days 0-7 following dose 2 was not common among case-patients or controls. CONCLUSIONS: History of SARS-CoV-2 infection was significantly associated with severe systemic AEs following dose 1 of mRNA COVID-19 vaccine; the effect varied by vaccine received. Most participants who experienced severe systemic AEs following dose 1 did not require medical attention of any kind for symptoms following dose 2. Vaccine providers can use these findings to counsel patients who had pre-vaccination SARS-CoV-2 infection histories, experienced severe systemic AEs following dose 1, and are considering not receiving additional mRNA COVID-19 vaccine doses.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2 , ARN Mensajero , Vacuna BNT162 , Estudios de Casos y Controles , Vacunación/efectos adversos
5.
BMC Med ; 19(1): 124, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1231243

RESUMEN

BACKGROUND: The COVID-19 pandemic and ensuing national lockdowns have dramatically changed the healthcare landscape. The pandemic's impact on people with chronic obstructive pulmonary disease (COPD) remains poorly understood. We hypothesised that the UK-wide lockdown restrictions were associated with reductions in severe COPD exacerbations. We provide the first national level analyses of the impact of the COVID-19 pandemic and first lockdown on severe COPD exacerbations resulting in emergency hospital admissions and/or leading to death as well as those recorded in primary care or emergency departments. METHODS: Using data from Public Health Scotland and the Secure Anonymised Information Linkage Databank in Wales, we accessed weekly counts of emergency hospital admissions and deaths due to COPD over the first 30 weeks of 2020 and compared these to the national averages over the preceding 5 years. For both Scotland and Wales, we undertook interrupted time-series analyses to model the impact of instigating lockdown on these outcomes. Using fixed-effect meta-analysis, we derived pooled estimates of the overall changes in trends across the two nations. RESULTS: Lockdown was associated with 48% pooled reduction in emergency admissions for COPD in both countries (incidence rate ratio, IRR 0.52, 95% CI 0.46 to 0.58), relative to the 5-year averages. There was no statistically significant change in deaths due to COPD (pooled IRR 1.08, 95% CI 0.87 to 1.33). In Wales, lockdown was associated with 39% reduction in primary care consultations for acute exacerbation of COPD (IRR 0.61, 95% CI 0.52 to 0.71) and 46% reduction in COPD-related emergency department attendances (IRR 0.54, 95% CI 0.36 to 0.81). CONCLUSIONS: The UK-wide lockdown was associated with the most substantial reductions in COPD exacerbations ever seen across Scotland and Wales, with no corresponding increase in COPD deaths. This may have resulted from reduced transmission of respiratory infections, reduced exposure to outdoor air pollution and/or improved COPD self-management.


Asunto(s)
COVID-19/prevención & control , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/mortalidad , Cuarentena , COVID-19/complicaciones , Servicio de Urgencia en Hospital , Hospitalización , Humanos , Incidencia , Análisis de Series de Tiempo Interrumpido , Pandemias , Atención Primaria de Salud , SARS-CoV-2 , Escocia , Gales
6.
BMC Med ; 19(1): 51, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1094033

RESUMEN

BACKGROUND: The objective of this study was to investigate the relation of severe COVID-19 to prior drug prescribing. METHODS: Severe cases were defined by entry to critical care or fatal outcome. For this matched case-control study (REACT-SCOT), all 4251 cases of severe COVID-19 in Scotland since the start of the epidemic were matched for age, sex and primary care practice to 36,738 controls from the population register. Records were linked to hospital discharges since June 2015 and dispensed prescriptions issued in primary care during the last 240 days. RESULTS: Severe COVID-19 was strongly associated with the number of non-cardiovascular drug classes dispensed. This association was strongest in those not resident in a care home, in whom the rate ratio (95% CI) associated with dispensing of 12 or more drug classes versus none was 10.8 (8.8, 13.3), and in those without any of the conditions designated as conferring increased risk of COVID-19. Of 17 drug classes postulated at the start of the epidemic to be "medications compromising COVID", all were associated with increased risk of severe COVID-19 and these associations were present in those without any of the designated risk conditions. The fraction of cases in the population attributable to exposure to these drug classes was 38%. The largest effect was for antipsychotic agents: rate ratio 4.18 (3.42, 5.11). Other drug classes with large effects included proton pump inhibitors (rate ratio 2.20 (1.72, 2.83) for = 2 defined daily doses/day), opioids (3.66 (2.68, 5.01) for = 50 mg morphine equivalent/day) and gabapentinoids. These associations persisted after adjusting for covariates and were stronger with recent than with non-recent exposure. CONCLUSIONS: Severe COVID-19 is associated with polypharmacy and with drugs that cause sedation, respiratory depression, or dyskinesia; have anticholinergic effects; or affect the gastrointestinal system. These associations are not easily explained by co-morbidity. Measures to reduce the burden of mortality and morbidity from COVID-19 should include reinforcing existing guidance on reducing overprescribing of these drug classes and limiting inappropriate polypharmacy. REGISTRATION: ENCEPP number EUPAS35558.


Asunto(s)
COVID-19/diagnóstico , COVID-19/epidemiología , Cuidados Críticos/tendencias , Polifarmacia , Psicotrópicos/efectos adversos , Índice de Severidad de la Enfermedad , Anciano , Anciano de 80 o más Años , COVID-19/inducido químicamente , Estudios de Casos y Controles , Comorbilidad , Relación Dosis-Respuesta a Droga , Prescripciones de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Psicotrópicos/uso terapéutico , Escocia/epidemiología
7.
Euro Surveill ; 26(2)2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1067623

RESUMEN

The European monitoring of excess mortality for public health action (EuroMOMO) network monitors weekly excess all-cause mortality in 27 European countries or subnational areas. During the first wave of the coronavirus disease (COVID-19) pandemic in Europe in spring 2020, several countries experienced extraordinarily high levels of excess mortality. Europe is currently seeing another upsurge in COVID-19 cases, and EuroMOMO is again witnessing a substantial excess all-cause mortality attributable to COVID-19.


Asunto(s)
COVID-19/mortalidad , Mortalidad/tendencias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/epidemiología , Causas de Muerte , Niño , Preescolar , Sistemas de Computación , Monitoreo Epidemiológico , Europa (Continente)/epidemiología , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , SARS-CoV-2 , Adulto Joven
8.
Lancet Diabetes Endocrinol ; 9(2): 82-93, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-989524

RESUMEN

BACKGROUND: We aimed to ascertain the cumulative risk of fatal or critical care unit-treated COVID-19 in people with diabetes and compare it with that of people without diabetes, and to investigate risk factors for and build a cross-validated predictive model of fatal or critical care unit-treated COVID-19 among people with diabetes. METHODS: In this cohort study, we captured the data encompassing the first wave of the pandemic in Scotland, from March 1, 2020, when the first case was identified, to July 31, 2020, when infection rates had dropped sufficiently that shielding measures were officially terminated. The participants were the total population of Scotland, including all people with diabetes who were alive 3 weeks before the start of the pandemic in Scotland (estimated Feb 7, 2020). We ascertained how many people developed fatal or critical care unit-treated COVID-19 in this period from the Electronic Communication of Surveillance in Scotland database (on virology), the RAPID database of daily hospitalisations, the Scottish Morbidity Records-01 of hospital discharges, the National Records of Scotland death registrations data, and the Scottish Intensive Care Society and Audit Group database (on critical care). Among people with fatal or critical care unit-treated COVID-19, diabetes status was ascertained by linkage to the national diabetes register, Scottish Care Information Diabetes. We compared the cumulative incidence of fatal or critical care unit-treated COVID-19 in people with and without diabetes using logistic regression. For people with diabetes, we obtained data on potential risk factors for fatal or critical care unit-treated COVID-19 from the national diabetes register and other linked health administrative databases. We tested the association of these factors with fatal or critical care unit-treated COVID-19 in people with diabetes, and constructed a prediction model using stepwise regression and 20-fold cross-validation. FINDINGS: Of the total Scottish population on March 1, 2020 (n=5 463 300), the population with diabetes was 319 349 (5·8%), 1082 (0·3%) of whom developed fatal or critical care unit-treated COVID-19 by July 31, 2020, of whom 972 (89·8%) were aged 60 years or older. In the population without diabetes, 4081 (0·1%) of 5 143 951 people developed fatal or critical care unit-treated COVID-19. As of July 31, the overall odds ratio (OR) for diabetes, adjusted for age and sex, was 1·395 (95% CI 1·304-1·494; p<0·0001, compared with the risk in those without diabetes. The OR was 2·396 (1·815-3·163; p<0·0001) in type 1 diabetes and 1·369 (1·276-1·468; p<0·0001) in type 2 diabetes. Among people with diabetes, adjusted for age, sex, and diabetes duration and type, those who developed fatal or critical care unit-treated COVID-19 were more likely to be male, live in residential care or a more deprived area, have a COVID-19 risk condition, retinopathy, reduced renal function, or worse glycaemic control, have had a diabetic ketoacidosis or hypoglycaemia hospitalisation in the past 5 years, be on more anti-diabetic and other medication (all p<0·0001), and have been a smoker (p=0·0011). The cross-validated predictive model of fatal or critical care unit-treated COVID-19 in people with diabetes had a C-statistic of 0·85 (0·83-0·86). INTERPRETATION: Overall risks of fatal or critical care unit-treated COVID-19 were substantially elevated in those with type 1 and type 2 diabetes compared with the background population. The risk of fatal or critical care unit-treated COVID-19, and therefore the need for special protective measures, varies widely among those with diabetes but can be predicted reasonably well using previous clinical history. FUNDING: None.


Asunto(s)
COVID-19/epidemiología , COVID-19/terapia , Diabetes Mellitus/epidemiología , Diabetes Mellitus/terapia , Vigilancia de la Población , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , Estudios de Cohortes , Cuidados Críticos/tendencias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Escocia/epidemiología , Adulto Joven
9.
BMJ ; 371: m3582, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: covidwho-894848

RESUMEN

OBJECTIVE: To assess the risk of hospital admission for coronavirus disease 2019 (covid-19) among patient facing and non-patient facing healthcare workers and their household members. DESIGN: Nationwide linkage cohort study. SETTING: Scotland, UK, 1 March to 6 June 2020. PARTICIPANTS: Healthcare workers aged 18-65 years, their households, and other members of the general population. MAIN OUTCOME MEASURE: Admission to hospital with covid-19. RESULTS: The cohort comprised 158 445 healthcare workers, most of them (90 733; 57.3%) being patient facing, and 229 905 household members. Of all hospital admissions for covid-19 in the working age population (18-65 year olds), 17.2% (360/2097) were in healthcare workers or their households. After adjustment for age, sex, ethnicity, socioeconomic deprivation, and comorbidity, the risk of admission due to covid-19 in non-patient facing healthcare workers and their households was similar to the risk in the general population (hazard ratio 0.81 (95% confidence interval 0.52 to 1.26) and 0.86 (0.49 to 1.51), respectively). In models adjusting for the same covariates, however, patient facing healthcare workers, compared with non-patient facing healthcare workers, were at higher risk (hazard ratio 3.30, 2.13 to 5.13), as were household members of patient facing healthcare workers (1.79, 1.10 to 2.91). After sub-division of patient facing healthcare workers into those who worked in "front door," intensive care, and non-intensive care aerosol generating settings and other, those in front door roles were at higher risk (hazard ratio 2.09, 1.49 to 2.94). For most patient facing healthcare workers and their households, the estimated absolute risk of hospital admission with covid-19 was less than 0.5%, but it was 1% and above in older men with comorbidity. CONCLUSIONS: Healthcare workers and their households contributed a sixth of covid-19 cases admitted to hospital. Although the absolute risk of admission was low overall, patient facing healthcare workers and their household members had threefold and twofold increased risks of admission with covid-19.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Familia , Personal de Salud/estadística & datos numéricos , Hospitalización/estadística & datos numéricos , Neumonía Viral/epidemiología , Adolescente , Adulto , Anciano , Betacoronavirus , COVID-19 , Estudios de Cohortes , Comorbilidad , Femenino , Personal de Salud/clasificación , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Factores de Riesgo , SARS-CoV-2 , Escocia/epidemiología , Adulto Joven
10.
PLoS Med ; 17(10): e1003374, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-881135

RESUMEN

BACKGROUND: The objectives of this study were to identify risk factors for severe coronavirus disease 2019 (COVID-19) and to lay the basis for risk stratification based on demographic data and health records. METHODS AND FINDINGS: The design was a matched case-control study. Severe COVID-19 was defined as either a positive nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the national database followed by entry to a critical care unit or death within 28 days or a death certificate with COVID-19 as underlying cause. Up to 10 controls per case matched for sex, age, and primary care practice were selected from the national population register. For this analysis-based on ascertainment of positive test results up to 6 June 2020, entry to critical care up to 14 June 2020, and deaths registered up to 14 June 2020-there were 36,948 controls and 4,272 cases, of which 1,894 (44%) were care home residents. All diagnostic codes from the past 5 years of hospitalisation records and all drug codes from prescriptions dispensed during the past 240 days were extracted. Rate ratios for severe COVID-19 were estimated by conditional logistic regression. In a logistic regression using the age-sex distribution of the national population, the odds ratios for severe disease were 2.87 for a 10-year increase in age and 1.63 for male sex. In the case-control analysis, the strongest risk factor was residence in a care home, with rate ratio 21.4 (95% CI 19.1-23.9, p = 8 × 10-644). Univariate rate ratios for conditions listed by public health agencies as conferring high risk were 2.75 (95% CI 1.96-3.88, p = 6 × 10-9) for type 1 diabetes, 1.60 (95% CI 1.48-1.74, p = 8 × 10-30) for type 2 diabetes, 1.49 (95% CI 1.37-1.61, p = 3 × 10-21) for ischemic heart disease, 2.23 (95% CI 2.08-2.39, p = 4 × 10-109) for other heart disease, 1.96 (95% CI 1.83-2.10, p = 2 × 10-78) for chronic lower respiratory tract disease, 4.06 (95% CI 3.15-5.23, p = 3 × 10-27) for chronic kidney disease, 5.4 (95% CI 4.9-5.8, p = 1 × 10-354) for neurological disease, 3.61 (95% CI 2.60-5.00, p = 2 × 10-14) for chronic liver disease, and 2.66 (95% CI 1.86-3.79, p = 7 × 10-8) for immune deficiency or suppression. Seventy-eight percent of cases and 52% of controls had at least one listed condition (51% of cases and 11% of controls under age 40). Severe disease was associated with encashment of at least one prescription in the past 9 months and with at least one hospital admission in the past 5 years (rate ratios 3.10 [95% CI 2.59-3.71] and 2.75 [95% CI 2.53-2.99], respectively) even after adjusting for the listed conditions. In those without listed conditions, significant associations with severe disease were seen across many hospital diagnoses and drug categories. Age and sex provided 2.58 bits of information for discrimination. A model based on demographic variables, listed conditions, hospital diagnoses, and prescriptions provided an additional 1.07 bits (C-statistic 0.804). A limitation of this study is that records from primary care were not available. CONCLUSIONS: We have shown that, along with older age and male sex, severe COVID-19 is strongly associated with past medical history across all age groups. Many comorbidities beyond the risk conditions designated by public health agencies contribute to this. A risk classifier that uses all the information available in health records, rather than only a limited set of conditions, will more accurately discriminate between low-risk and high-risk individuals who may require shielding until the epidemic is over.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Estado de Salud , Hospitalización , Neumonía Viral/epidemiología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Estudios de Casos y Controles , Comorbilidad , Infecciones por Coronavirus/virología , Quimioterapia , Registros Electrónicos de Salud , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Pandemias , Neumonía Viral/virología , Factores de Riesgo , SARS-CoV-2 , Escocia/epidemiología , Adulto Joven
11.
Euro Surveill ; 25(26)2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-639161

RESUMEN

A remarkable excess mortality has coincided with the COVID-19 pandemic in Europe. We present preliminary pooled estimates of all-cause mortality for 24 European countries/federal states participating in the European monitoring of excess mortality for public health action (EuroMOMO) network, for the period March-April 2020. Excess mortality particularly affected ≥ 65 year olds (91% of all excess deaths), but also 45-64 (8%) and 15-44 year olds (1%). No excess mortality was observed in 0-14 year olds.


Asunto(s)
Causas de Muerte/tendencias , Infecciones por Coronavirus/mortalidad , Coronavirus/aislamiento & purificación , Gripe Humana/mortalidad , Neumonía Viral/mortalidad , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/diagnóstico , Brotes de Enfermedades , Europa (Continente)/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Gripe Humana/diagnóstico , Masculino , Persona de Mediana Edad , Mortalidad/tendencias , Pandemias , Neumonía Viral/diagnóstico , Vigilancia de la Población , Datos Preliminares , SARS-CoV-2 , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA